d02 - Ordinary Differential Equations d02gbc

nag_ode_bvp_fd lin_gen (d02gbc)

1. Purpose

nag_ode_bvp_fd_lin_gen (d02gbc) solves a general linear two-point boundary value problem for a
system of ordinary differential equations using a deferred correction technique.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd_lin_gen(Integer neq,
void (*fcnf) (Integer neq, double x, double f[], Nag_User *comm),
void (*fcng) (Integer neq, double x, double gl[], Nag_User *comm),
double a, double b, double c[], double d[], double gam[],
Integer mnp, Integer *np, double x[], double y[], double tol,
Nag_User *comm, NagError *fail)

3. Description

This function solves the linear two-point boundary value problem for a system of neq ordinary
differential equations in the interval [a,b]. The system is written in the form

/

Y = F(x)y + g(z) (1)

and the boundary conditions are written in the form

Cy(a) + Dy(b) =~ (2)

Here F(x), C and D are neq by neq matrices, and g(x) and v are neq component vectors.
The approximate solution to (1) and (2) is found using a finite-difference method with deferred
correction. The algorithm is a specialisation of that used in the function nag_ode_bvp_fd_nonlin_gen
(d02rac) which solves a nonlinear version of (1) and (2). The nonlinear version of the algorithm is
described fully in Pereyra (1979).

The user supplies an absolute error tolerance and may also supply an initial mesh for the
construction of the finite-difference equations (alternatively a default mesh is used). The algorithm
constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen
so that the error is everywhere less than the user’s tolerance and so that the error is approximately
equidistributed on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh.
If, on the other hand, the solution is required at several specific points, then the user should use the
interpolation routines provided in Chapter e01 if these points do not themselves form a convenient
mesh.

4. Parameters

neq
Input: the number of equations; that is neq is the order of system (1).
Constraint: neq > 2.

fenf
The function fenf, supplied by the user, must evaluate the matrix F'(z) in (1) at a general
point x.
The specification of fenf is:

[NP3275/5/pdf] 3.d02gbc. 1

nag_ode_bvp_fd_lin_gen NAG C Library Manual

void fcnf (Integer neq, double x, double f[], Nag_User *comm)

neq
Input: the number of differential equations.
X
Input: the value of the independent variable x.
flneq+neq]
Output: the (i, 7)th element of the matrix F'(z), for i,j = 1,2, ... ,neq where F};
is set by f[(i — 1) * neq + (5 — 1)]. (See Section 8 for an example.)
comm
Input/Output: pointer to a structure of type Nag User with the following
member:
p - Pointer

Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

feng
The function feng, supplied by the user, must evaluate the vector g(z) in (1) at a general
point x.
The specification of feng is:
void fcng (Integer neq, double x, double g[], Nag_User *comm)
neq
Input: the number of differential equations.
X
Input: the value of the independent variable x.
g[neq]
Output: the ith element of the vector g(z), for ¢ = 1,2,...,neq. (See Section 8
for an example.)
comm
Input/Output: pointer to a structure of type Nag User with the following
member:
p - Pointer
Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)
If the user does not wish to supply feng the actual argument feng must be the NAG defined
null funtion pointer NULLFN.
a
Input: the left-hand boundary point, a.
b
Input: the right-hand boundary point, b.
Constraint: b > a.
c[ned]ned]
d[neq][neq]
gam/|neq]
Input: the arrays ¢ and d must be set to the matrices C and D in (2). gam must be set to
the vector « in (2).
Output: the rows of ¢ and d and the components of gam are re-ordered so that the boundary
conditions are in the order:
3.d02gbc.2 [NP3275/5/pdH]

d02 - Ordinary Differential Equations d02gbc

mnp

(i) conditions on y(a) only;
(ii) condition involving y(a) and y(b); and

(iii) conditions on y(b) only.

The routine will be slightly more efficient if the arrays ¢, d and gam are ordered in this way
before entry, and in this event they will be unchanged on exit.

Note that the boundary conditions must be of boundary value type, that is neither C' nor D
may be identically zero. Note also that the rank of the matrix [C, D] must be neq for the
problem to be properly posed. Any violation of these conditions will lead to an error exit.

Input: the maximum permitted number of mesh points.
Constraint: mnp > 32.

np
Input: determines whether a default or user-supplied initial mesh is used. If np = 0, then np
is set to a default value of 4 and a corresponding equispaced mesh x[0],x[1],...,x[np — 1] is
used. If np > 4, then the user must define an initial mesh using the array x as described.
Constraint: np = 0 or 4 < np < mnp.
Output: the number of points in the final (returned) mesh.
x[mnp]
Input: if np > 4 (see np above), the first np elements must define an initial mesh. Otherwise
the elements of x need not be set.
Constraint: a = x[0] < x[1] < ... < x[np—1] = b, for np > 4. (3)
Output: x[0],x[1],...,x[np—1] define the final mesh (with the returned value of np) satisfying
the relation (3).
¥ [neq] [mnp]
Output: the approximate solution z;(z;) satisfying (4), on the final mesh, that is
yli =1 -1 =2(x;),i=1,2,...,np;j = 1,2,...,neq,
where np is the number of points in the final mesh.
The remaining columns of y are not used.
tol
Input: a positive absolute error tolerance. If
a=z <y <...<Tp,=0b
is the final mesh, z;(z;) is the jth component of the approximate solution at z;, and y;(z;)
is the jth component of the true solution of equation (1) (see Section 3) and the boundary
conditions, then, except in extreme cases, it is expected that
|zj(:ni) — y](:cl)| <tol,i=1,2,...,np;7=1,2,...,neq (4)
Constraint: tol > 0.0.
comm
Input/Output: pointer to a structure of type Nag_User with the following member:
p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined functions fenf() and feng(). An object of the
required type should be declared by the user, e.g. a structure, and its address assigned
to the pointer p by means of a cast to Pointer in the calling program, e.g. comm.p =
(Pointer)&s. The type pointer will be void * with a C compiler that defines void *
and char * otherwise.
fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

[NP3275/5/pdf] 3.d02gbc.3

nag_ode_bvp_fd_lin_gen NAG C Library Manual

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, neq must not be less than 2: neq = (value).
On entry, mnp must not be less than 32: mnp = (value).

NE_REAL_ARG_LE
On entry, tol must not be less than or equal to 0.0: tol = (value).

NE_2_ REAL_ARG_LE
On entry, b = (value) while a = (value). These parameters must satisfy b > a.

NE_INT_RANGE_CONS_2
On entry, np = (value) and mnp = (value). The parameter np must satisfy either 4 < np <
mnp or np = 0.

NE_BOUND_COND_ROW

Row (value) of the array ¢ and the corresponding row of array d are identically zero. i.e., the
boundary conditions are rank deficient.

NE_BOUND_COND_COL
More than neq columns of the neq by 2 x neq matrix [C, D] are identically zero. i.e., the
boundary conditions are rank deficient. The number of non-identically zero columns is (value).

NE_BOUND_COND_LC
At least one row of the neq by 2 x neq matrix [C, D] is a linear combination of the other rows,
i.e., the boundary conditions are rank deficient. The index of the first such row is (value).

NE_BOUND_COND_NLC
At least one row of the neq by 2 x neq matrix [C, D] is a linear combination of the other
rows determined up to a numerical tolerance, i.e., the boundary conditions are rank deficient.
The index of first such row is (value).
There is some doubt as to the rank deficiency of the boundary conditions. However even if
the boundary conditions are not rank deficient they are not posed in a suitable form for use
with this routine.
For example, if

(1 0 (1 0 (™
c-(12) »=G0) - ()
and ¢ is small enough, this error exit is likely to be taken. A better form for the boundary
conditions in this case would be

-(b9) 2-G D) (o)

NE_LF_B_MESH
On entry, the left boundary value a, has not been set to x[0]: a = (value), x[0] = (value).

NE_RT_B_MESH
On entry, the right boundary value b, has not been set to x[np—1]: b
(value).

NE_NOT_STRICTLY _.INCREASING
The sequence x is not strictly increasing: x[(value)] = (value), x[(value)] = (value).

NE_BOUND_COND_MAT
One of the matrices C' or D is identically zero, i.e., the problem is of initial value and not of
the boundary type.

NE_ALLOC_FAIL
Memory allocation failed.

NE_CONV_MESH
A finer mesh is required for the accuracy requested; that is mnp is not large enough.

(value), x[np—1] =

3.d02gbc.4 [NP3275/5/pdf]

d02 - Ordinary Differential Equations d02gbc

6.1.

6.2.

NE_CONV_MESH_INIT
The Newton iteration failed to converge on the initial mesh. This may be due to the initial
mesh having too few points or the initial approximate solution being too inaccurate. Try
using nag-ode_bvp_fd_nonlin_gen (d02rac).

NE_CONV_ROUNDOFF
Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

Further Comments

The time taken by the function depends on the difficulty of the problem, the number of mesh points
(and meshes) used and the number of deferred corrections.

In the case where the user wishes to solve a sequence of similar problems, the use of the final mesh
from one case is strongly recommended as the initial mesh for the next.

Accuracy

The solution returned by the function will be accurate to the user’s tolerance as defined by
the relation (4) except in extreme circumstances. If too many points are specified in the initial
mesh, the solution may be more accurate than requested and the error may not be approximately
equidistributed.

References

Pereyra V (1979) PASVA3: An Adaptive Finite-Difference Fortran Program for First Order
Nonlinear, Ordinary Boundary Problems. In: ‘Codes for Boundary Value Problems in Ordinary
Differential Equations’. Lecture Notes in Computer Science. (ed B Childs, M Scott JW Daniel,
E Denman and P Nelson) 76 Springer-Verlag.

See Also

nag-ode_bvp_fd_nonlin_fixedbe (d02gac)
nag-ode_bvp_fd_nonlin_gen (d02rac)

Example
We solve the problem (written as a first order system)
Ey” + yl _ 0

with boundary conditions

for the cases ¢ = 107! and ¢ = 10~2 using the default initial mesh in the first case, and the final
mesh of the first case as initial mesh for the second (more difficult) case. We give the solution and
the error at each mesh point to illustrate the accuracy of the method given the accuracy request
tol = 1.0e—3.

[NP3275/5/pdf] 3.d02gbc.5

nag_ode_bvp_fd_lin_gen NAG C Library Manual

8.1. Program Text

/* nag_ode_bvp_fd_lin_gen(d02gbc) Example Program
Copyright 1994 Numerical Algorithms Group.

Mark 3, 1994.

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO

static void fcnf(Integer neq, double x, double f[1, Nag_User *comm) ;
#else

static void fcnf();

#endif

#tdefine NEQ 2
#define MNP 70

main()

{

double a, b, c[NEQ][NEQ], d[NEQ][NEQ];
Integer i, j;

double eps;

double x[MNP], y[NEQ] [MNP];

Integer neq, mnp, np;

double gam[NEQ], tol;

Nag_User comm;

Vprintf ("d02gbc Example Program Results\n");

/* For communication with function fcnf ()
* assign address of eps to comm.p.

comm.p = (Pointer)&eps;

neq = NEQ;
mnp = MNP;
tol = 1.0e-3;
np = 0;
a=0.0;
b=1.0;
for (i=0; i<neq; ++i)
{
gam[i] = 0.0;
for (j=0; j<neq; ++j)
{
c[i][j] = 0.0;
dl[i]l[j] = 0.0;
}
c[o][0] = 1.0;
d[1][0] = 1.0;
gam[1] = 1.0;
for (i=1; i<=2; ++i)
{

eps = pow (10.0, (double) -i);

Vprintf ("\nProblem with epsilon = %7.4f\n", eps);

d02gbc(neq, fcnf, NULLFN, a, b, (double *)c, (double *)d, gam,
mnp, &np, x, (double *)y, tol, &comm, NAGERR_DEFAULT);

Vprintf ("\nApproximate solution on final mesh of %1d points\n", np);

3.d02gbc.6 [NP3275/5/pdf]

d02 — Ordinary Differential Equations

8.2.

8.3.

Vprintf (" X(I) Y(1,I)\n");
for (j=0; j<up; ++j)
Vprintf ("%9.4f %9.4f\n", x[jl, y[0][j1);

}

exit (EXIT_SUCCESS);
}

#ifdef NAG_PROTO

static void fcnf(Integer neq, double x, double f[], Nag_User *comm)

#else
static void fcnf(neq, x, f, comm)
Integer neq;
double x;
double f[];
Nag_User *comm;

#endif

{

#define F(I, J) f[(I)*neq+J]

double *eps = (double *)comm->p;

F(0,0) = 0.0;
F(0,1) = 1.0;
F(1,0) = 0.0;
F(1,1) = -1.0/ *eps;

}

Program Data

None.

Program Results

dO2gbc Example Program Results

Problem with epsilon = 0.1000

Approximate solution on final mesh of 15 points

X(D) Y(1,I)
0.0000 0.0000
0.0278 0.2425
0.0556 0.4263
0.1111 0.6708
0.1667 0.8112
0.2222 0.8917
0.2778 0.9379
0.3333 0.9644
0.4444 0.9883
0.5556 0.9962
0.6667 0.9988
0.7500 0.9995
0.8333 0.9998
0.9167 0.9999
1.0000 1.0000

Problem with epsilon = 0.0100

Approximate solution on final mesh of 49 points

X(I) Y(1,I)
0.0000 0.0000
0.0009 0.0884
0.0019 0.1690
0.0028 0.2425
0.0037 0.3095
0.0046 0.3706
0.0056 0.4262
0.0065 0.4770
0.0074 0.5232
0.0083 0.5654

[NP3275/5/pdf]

d02gbc

3.d02gbc.7

nag_ode_bvp_fd_lin_gen

aleleNeoNoNololoNoloNoNoNoNoloNoloNoloNoNoNoNoNoNoNoNoNoloNoloNoNoNoNoNoNoNeo Ne)

.0093
.0111
.0130
.0148
.0167
.0185
.0204
.0222
.0241
.0259
.0278
.0306
.0333
.0361
.0389
.0417
.0444
.0472
.0500
.0528
.0556
.0648
.0741
.0833
.0926
.1019
L1111
.1389
.1667
.2222
L2778
.3333
.4444
.55656
.6667
.7500
.8333
.9167
.0000

PR PR PR R PR RPR,PR,PRPRPPRPO000000000000000000000O0OOO0

.6038
.6708
. 7265
L1727
.8111
.8431
.8696
.8916
.9100
.9252
.9378
.9529
.9643
.9730
.9795
.9845
.9883
.9911
.9933
.9949
.9961
.9985
.9994
.9998
.9999
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

NAG C Library Manual

3.d02gbc.8

[NP3275/5/pdf]

